WEST BENGAL STATE UNIVERSITY B.Sc. Honours 5th Semester Examination, 2022-23 ## MTMACOR12T-MATHEMATICS (CC12) Time Allotted: 2 Hours Full Marks: 50 The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance. ## Answer Question No. 1 and any five from the rest | 1. | | Answer any five questions from the following: | $2 \times 5 = 10$ | |----|-----|---|-------------------| | | (a) | Show that the function $f: \mathbb{R}^+ \to \mathbb{R}^+$ defined by $f(x) = \sqrt{x}$ for all $x \in \mathbb{R}^+$ is an automorphism of the multiplicative group of positive real numbers. | | | | (b) | Consider the elements $a = (1 \ 2 \ 3)$ and $b = (1 \ 4)$ in S_4 . Determine the commutator $[a, b]$ of a and b in S_4 . | | | | (c) | Let $X = \{1, 2, 3, 4, 5\}$ and suppose that G is the permutation group defined as $\{(1), (1\ 2\ 3), (1\ 3\ 2), (4\ 5), (1\ 2\ 3), (1\ 3\ 2), (4\ 5)\}$. Let X be the G -set under the action $\sigma.x = \sigma(x)$, for all $\sigma \in G$, $x \in X$. Find all the distinct orbits of | | | | (d) | X under the given action. Is there any group of order 9 whose class equation is given by $9 = 1+1+1+3+3$? Justify your answer. | | | | (e) | Show that $Z(G)$ is a characteristic subgroup of G . | | | | (f) | Let G be a group of order 125 then show that G has a non-trivial Abelian subgroup. | | | | | Prove or disprove: Every group of order 76 contains a unique element of order 19. Prove that the external direct product $\mathbb{Z}_2 \times \mathbb{Z}_3$ of \mathbb{Z}_2 and \mathbb{Z}_3 is isomorphic with the group \mathbb{Z}_6 . | | | | (i) | Prove or disprove: A_4 is simple. | | | 2. | (a) | Let G denote the Klein's 4-group. Find the order of the automorphism group $Aut(G)$ of G . | 2 | | | (b) | Let G be a group and for each $a \in G$, $f_a : G \to G$ denote the mapping defined | 4 | | | | by $f_a(g) = gag^{-1}$ for all $g \in G$. Consider the set $Inn(G) = \{f_a : a \in G\}$. Prove that $Inn(G)$ is a normal subgroup of the automorphism group of G . | | | | (c) | Give examples of two non-isomorphic finite groups whose automorphism groups are isomorphic to each other. Justify your choice of groups. | 2 | | 3. | (a) | Show that commutator subgroup of a group G is a characteristic subgroup of G . | 3 | | | (b) | Show that every characteristic subgroup is a normal subgroup but the converse need not be true. | 3 | | | (c) | Let $U(n)$ denote the group of units modulo $n > 1$. Express $U(144)$ as an external direct product of cyclic groups. | 2 | | | | BESET SET USE TO SET 전 보고 보여는 아닌 아닌 아닌 아닌 아니다. 등 사용투자를 받아 모든 등 등 등 생활하는 것이 있어 있는 것이 했다. 이 기술을 살아가고 된다. 나는 | | 4. (a) Show that the group of all automorphisms of a finite cyclic group of order n is isomorphic to the group U_n of units modulo n. (b) Determine the group of all automorphisms of the additive group of all multiples of 3. 4 5. (a) If G be a cyclic group of order mn where g. c. d(m, n) = 1 show that G is isomorphic to the external direct product $P \times Q$ where order of the group P is m and order of the group O is n. 4 (b) Determine the number of elements of order 5 in $\mathbb{Z}_{25} \times \mathbb{Z}_5$, the external direct product of the groups \mathbb{Z}_{25} and \mathbb{Z}_5 . 2 6. (a) State fundamental theorem of finite abelian groups. (b) Describe all the abelian groups of order 539. Hence show that every such abelian 4+2 group has an element of order 77. 7. (a) Let G be a finite group of order 847 and H be a subgroup of G of index 7. Apply 4 generalized Cayley's theorem to show that H is a normal subgroup of G. 1+3 (b) Find the number of distinct conjugacy classes of the symmetric group S_5 . Determine the order of the conjugacy class of the permutation $\alpha = (1 \ 2)(3 \ 4)$ in S_5 . 8. (a) Let G be a group of permutations of a set S. For each $s \in S$ define stabilizer of 1+1+4 S in G and orbit of s under G. Show that, for any finite group of permutations of a set S, $|G| = |\operatorname{orb}_G(s)| |\operatorname{stab}_G(s)| \quad \forall s \in S.$ (b) Let $G = \{(1), (1 \ 2 \ 3) \ (4 \ 5 \ 6) \ (7 \ 8), (1 \ 2 \ 3) \ (4 \ 5 \ 6) \ (1 \ 3 \ 2) \ (4 \ 6 \ 5),$ 1+1 $(1 \ 3 \ 2) (4 \ 6 \ 5) (7 \ 8)$ Find orb_G(4) and stab_G(4). 9. (a) Let G be a finite group of order $p^n m$, where p is a prime integer, n is a 3+2 non-negative integer and m is a positive integer such that p does not divide m. If n_p denotes the number of Sylow p-subgroups of G, prove the following assertions: (i) $n_p \equiv 1 \pmod{p}$, (ii) $n_p \text{ devides } |G|$. (b) Let G be a group of order 99. If G has a normal subgroup of order 9, show that G 3 is a commutative group. 10.(a) Let G_1 and G_2 be two groups. Prove that the direct product $G_1 \times G_2$ is 2 commutative if and only if both G_1 and G_2 are commutative. (b) Show that the direct product $Z_6 \times Z_4$ of the cyclic groups Z_6 and Z_4 is not a 3 cyclic group. (c) Find all Abelian groups of order 63 which contain an element of order 21. 3